A Machine Learning Based Approach to **Mobile Network Analysis**

Zengwen Yuan¹, Yuanjie Li¹, Chunyi Peng², Songwu Lu¹, Haotian Deng², Zhaowei Tan¹, Taqi Raza¹

Why machine learning for mobile network analysis

Why machine learning for mobile network analysis

Mobile network analysis: state-of-the-art and our approach

Why machine learning for mobile network analysis

Mobile network analysis: state-of-the-art and our approach

Case study: analyzing latency for mobile networks

- How mobile apps work over LTE
- How to breakdown app-perceived latency
- Challenges and ML scheme
- Primary results from crowdsourcing

Why machine learning for mobile network analysis

Mobile network analysis: state-of-the-art and our approach

Case study: analyzing latency for mobile networks

- How mobile apps work over LTE
- How to breakdown app-perceived latency
- Challenges and ML scheme
- Primary results from crowdsourcing

Conclusion

Ubiquitous cellular networks connect everyone,

The race to 5G opens many new opportunities

Yet, access to mobile network analytics is barred

Oh we cannot tell you unless you sign an NDA...

Operators

Yet, access to mobile network analytics is barred

Plus, mobile networks are complex & distributed

More complex functions on both control and data planes

Operations are distributed across layers

• UCLA •

Analytics for mobile networks is problem-specific, for example:

Analytics for mobile networks is problem-specific, for example:

- Web browsers:
 - Why the time-to-first-byte (TTFB) is so long?
 - What's the major component of latency? **♦**
 - **+** ...

Analytics for mobile networks is problem-specific, for example:

- Web browsers:
 - ✦ Why the time-to-first-byte (TTFB) is so long?
 - What's the major component of latency?
 - •

...

- Instant message apps:
 - Does the recipient read my message?
 - Is my message delivered in time?

• UCLA •

Current 4G network analytics is primarily "infrastructure-based":

Current 4G network analytics is primarily "infrastructure-based":

Current 4G network analytics is primarily "infrastructure-based":

Cellular network (4G LTE)

Current 4G network analytics is primarily "infrastructure-based":

Not Scalable

Cellular network (4G LTE)

Current 4G network analytics is primarily "infrastructure-based":

Not Scalable

Cellular network (4G LTE)

Incomplete View

Current 4G network analytics is primarily "infrastructure-based":

Not Scalable

Cellular network (4G LTE)

Incomplete View

Incomplete View

Device-centric ML approach brings new hope

Not Scalable

Incomplete View

Device-centric ML approach brings new hope

Not Scalable

Scalability

Application Stack LTE int

Incomplete View

It is probably true that machine learning is a <u>must-have</u> approach, rather than a <u>nice-to-have</u> one, to our field for mobile network analysis

Our proposal: two-level device-centric ML approach

Our proposal: two-level device-centric ML approach

Local level: sensing mobile network data inside each smartphone

- Via hardware-software coordination (e.g. MobileInsight [ACM MobiCom'16])
- Via higher-layer (application/transport/IP) and lower-layer (cellular-specific) integration
- Via ML-assisted data plane prediction from control plane protocol reconstruction

Our proposal: two-level device-centric ML approach

Local level: sensing mobile network data inside each smartphone

- Via hardware-software coordination (e.g. MobileInsight [ACM MobiCom'16])
- Via higher-layer (application/transport/IP) and lower-layer (cellular-specific) integration
- Via ML-assisted data plane prediction from control plane protocol reconstruction

Global level:

- Crowdsourcing-based dataset
- **Cloud-synthesized insights**

Step 1: open up the "black-box" operations

- At/above IP network data: TCPDUMP
- Below IP network data: MobileInsight

Step 1: open up the "black-box" operations

- At/above IP network data: TCPDUMP
- Below IP network data: MobileInsight

Step 1: open up the "black-box" operations

- At/above IP network data: TCPDUMP
- Below IP network data: MobileInsight

Step 2: automated data preprocessing

• Data cleansing and integration of two sources

Local analysis

Step 1: open up the "black-box" operations

- At/above IP network data: TCPDUMP
- Below IP network data: MobileInsight

Step 2: automated data preprocessing

Data cleansing and integration of two sources

Local analysis

Step 1: open up the "black-box" operations

- At/above IP network data: TCPDUMP
- Below IP network data: MobileInsight

Step 2: automated data preprocessing

Data cleansing and integration of two sources

Step 3: local ML-based analysis

- Control plane for protocol operations
- Data plane for performance

Local analysis

Step 1: open up the "black-box" operations

- At/above IP network data: TCPDUMP
- Below IP network data: MobileInsight

Step 2: automated data preprocessing

• Data cleansing and integration of two sources

Step 3: local ML-based analysis

- Control plane for protocol operations
- Data plane for performance

Global analysis

Enabled by cloud-based crowdsourcing (e.g. cniCloud [HotWireless'17])

Analytical Insights for:

- **Geographical location**
- Operators

...

Phone models

Case study: latency analysis in mobile networks

Every millisecond of latency matters!

Mobile network users want *fast* access

• 1 second latency in page response \rightarrow 7% reduction in PageView [KissMetrics 2011]

Developers lose revenue due to long latency

- Every **100 ms costs** Amazon **1% (\$1.6 bn**) in sales
- An extra 400 ms latency drops daily Google searches per user by 0.6%

Latency does matter a lot!

What happens under the hood?

How LTE impacts perceived latency on mobile web/IM app?

Web server

What happens under the hood?

What happens under the hood?

What happens under the hood?

How LTE impacts perceived latency on mobile web/IM app?

Web server

What happens under the hood?

How LTE impacts perceived latency on mobile web/IM app?

Web server

What happens under the hood?

What happens under the hood?

How LTE impacts perceived latency on mobile web/IM app?

Cellular network (4G LTE)

What happens under the hood?

What happens under the hood?

What happens under the hood?

What happens under the hood?

What happens under the hood?

What happens under the hood?

• UCLA •

• UCLA •

P2. Service request

• UCLA •

Timing breakdown of control plane operations

Timing breakdown of control plane operations

Learning latency: latency data sensing

Three-tiered timing data collection:

- App-specific semantic timing (e.g. Navigation Timing API, IM timing model)
- TCP/IP stack timing (from TCPDUMP)
- LTE stack timing (from MobileInsight)

• UCLA •

Challenge: timestamp alignment

How to align timestamps at these layers?

- Domain-specific event tracing and mapping
- Machine-learning assisted

• UCLA •

Run a small webpage (4 KB) in Chrome on Android

- User is static, under good 4G LTE signal (-95 dBm), T-Mobile

Run a small webpage (4 KB) in Chrome on Android

User is static, under good 4G LTE signal (-95 dBm), T-Mobile

Total Latency: 473 msec

Clicking URL \rightarrow page loading complete, Steps (a)–(f)

Run a small webpage (4 KB) in Chrome on Android

User is static, under good 4G LTE signal (-95 dBm), T-Mobile

Total Latency: 473 msec

Clicking URL \rightarrow page loading complete, Steps (a)–(f)

Pinpointing the latency bottleneck

How to breakdown?

• UCLA •

Major component from Navigation Timing API: DNS lookup, 250 ms out of 473 ms

Major component from Navigation Timing API: DNS lookup, 250 ms out of 473 ms

Is the DNS server slow to handle connection?

- Major component from Navigation Timing API: DNS lookup, 250 ms out of 473 ms
- Is the DNS server slow to handle connection?
- Further breakdown: LTE service request takes 172 ms before the DNS setup

Is the DNS server slow to handle connection?

Queueing Stalled DNS Lookup Initial Connection Request Sent Waiting (TTFB) **Content Download**

- Major component from Navigation Timing API: DNS lookup, 250 ms out of 473 ms
- Further breakdown: LTE service request takes 172 ms before the DNS setup

Data-plane latency breakdown: local analysis II

DNS-Wait Grant 26 ms 17 ms DNS (IPv6) 12 ms **DNS-Wait Grant** DNS (IPv4) 16 ms **APP-OS** overhead 2.02 ms **TCP SYN-Wait Grant** 11 ms **TCP SYN-Send Data** TCP ACK (local processing) HTTP GET (send request) HTTP GET-Wait Grant HTTP GET-req sent HTTP-server RTT+ DL latency LTE-to-TCP overhead HTTP page DL transmission HTTP DL retransmission

Further zoom in and breakdown the remaining LTE data access latency (291 ms):

• UCLA •

Latency mapping for failures: local analysis III

Example: data plane suspension due t blocking during handover

Example: data plane suspension due to radio reconnection and head-of-line

Latency mapping for failures: local analysis III

blocking during handover

Blocking Request Sent Waiting Grant **Uplink Transmission** Handover Disruption – No data Handover Disruption – Duplicate recv'd data Waiting (TTFB, due to parallel TCP connection) **Content Download**

Example: data plane suspension due to radio reconnection and head-of-line

5.05 ms 0.58 ms 4 ms 130 ms 263 ms 36 ms 275 ms 33.16 ms

Machine learning scheme

We leverage domain-specific knowledge for ML-based predictions

Control plane: predict handover using a decision tree classifier

- Features from 3GPP standards
- Predicts handover 100ms before it occurs with >99% accuracy

Data plane: predict NACK/ACK flip at MAC layer

• UCLA •

Four US carriers + Google Project Fi

Four US carriers + Google Project Fi

23 phone models, 95,057 data sessions

- Four US carriers + Google Project Fi
- 23 phone models, 95,057 data sessions
- Overall latency: 77 2956 ms in 500K samples

- Four US carriers + Google Project Fi
- 23 phone models, 95,057 data sessions
- Overall latency: 77 2956 ms in 500K samples
 - Varies among different mobile carriers

- Four US carriers + Google Project Fi
- 23 phone models, 95,057 data sessions
- Overall latency: 77 2956 ms in 500K samples
 - Varies among different mobile carriers
 - Insensitive to varying radio link quality

• UCLA •

LTE data access latency: how frequent?

Frequent data access setup operations

- every 58.8 sec (median); 133.6 sec (average)
- cause: frequently entering power-saving mode

Short-lived Radio connectivity lifetime

- every 10.8 sec (median); 17.3 sec (average)
- cause: inactivity timer (regulated by standards)

LTE data access latency: how frequent?

Frequent data access setup operations

- every 58.8 sec (median); 133.6 sec (average)
- cause: frequently entering power-saving mode

Short-lived Radio connectivity lifetime

- every 10.8 sec (median); 17.3 sec (average)
- cause: inactivity timer (regulated by standards)

(a) CDF for consecutive request interval

LTE data access latency: how frequent?

Frequent data access setup operations

- every 58.8 sec (median); 133.6 sec (average)
- cause: frequently entering power-saving mode

Short-lived Radio connectivity lifetime

- every 10.8 sec (median); 17.3 sec (average)
- cause: inactivity timer (regulated by standards)

(a) CDF for consecutive request interval

(b) Radio connectivity lifetime

Verizon

• UCLA •

Sprint

Project Fi

Findings Summary

Tradio: <u>Radio connectivity setup</u>

- It contributes 67.5 –1665.0 ms of the overall LTE access latency.
- AT&T, Verizon, Sprint and Project-Fi, respectively.

Tctrl: <u>Connectivity state transfer</u>

- It contributes 28.75 ms to 2286.25ms of the overall LTE access latency.
- AT&T, Verizon, Sprint and Project-Fi, respectively.

On average, it contributes 39.7%, 44.0%, 61.9%, 64.2% and 43.7% of total latency in T-Mobile,

On average, it contributes 60.3%, 56.0%, 38.1%, 35.8% and 56.3% of total latency in T-Mobile,

Impact on mobile Web app: Chrome

Average page loading time for tested webpage: 411 ms

- LTE data access setup: 174 ms
- 42.3% total latency perceived

Similar results for Safari latency on iOS

Impact on instant-messaging: WhatsApp

Average time first data packet being ACKed: 341 ms

- LTE data access setup: 175 ms
- 51.4% total latency perceived

Discussion: reducing LTE latency

Data plane walk-arounds

Mask the data setup latency by waking device in connected mode in advance

Control plane acceleration

- MobiCom'17])
- Handover prediction

Other issues

- Extending to other network metrics (e.g. loss, throughput, ...)
- Theoretical bounds
- Privacy issues

Speed up connectivity state transfer between the base station and the mobility controller (e.g. DPCM [ACM]

Conclusion: ML-based analysis for next-gen mobile networks

- Device-centric: unveil the tightly-guided operation issues over 4G/5G mobile networks
- Two-tiered approach: a more open solution approach for the research community

- Mobile networks are successful and will continue to prosper (5G, self driving, ...)
- Mobile network analysis: paradigm shift to device-centric, ML-based scheme

