

Stable Hierarchical Addressing and Routing for Operational Satellite Networks

Presenter: Lixin Liu Joint work with Yuanjie Li, Hewu Li, Wei Liu, Yimei Chen, Jianping Wu, Qian Wu, Jun Liu, Zeqi Lai draft-li-istn-addressing-requirement-04

*figure source: Geespace

Low Earth Orbit (LEO) Mega-Constellation

8 SHELLS

High-speed Internet for the "unconnected" 2.7B users

LEO Mega-Constellation in Reality

Inter-satellite lasers are currently only used if the satellite cannot see the user terminal and ground station simultaneously. Over ocean, it's all lasers.

Inter-satellite links (ISLs) are not activated at scale

LEO Mega-Constellation in Reality

Inter-satellite links (ISLs) are not activated at scale

LEO Mega-Constellation in Reality

Chaotic and exhaustive network dynamics

This talk

- What does LEO network dynamics look like?
- How does LEO dynamics affect satellite networking?
- How to renovate addressing & routing over dynamics?
- A case: Stable Hierarchical Addressing and Routing

Ideal Low-Earth-Orbit Dynamics

1. Space-Terrestrial Dynamics

Asynchronous mobility between the LEO satellite and Earth

Ideal Low-Earth-Orbit Dynamics

2. Intra-Orbital-Shell Dynamics

Homogeneous satellites \rightarrow Mild ISL dynamics in ideal cases

Ideal Low-Earth-Orbit Dynamics

3. Inter-Orbital-Shell Dynamics

Heterogeneous satellites \rightarrow Chaotic ISL dynamics even in ideal cases

Real Low-Earth-Orbit Dynamics

Orbital imperfections

- Orbital drags
- Orbital maneuvers

Partial deployments

"A Networking Perspective on Starlink's Self-Driving LEO Mega-Constellation", MobiCom 2023

Real Low-Earth-Orbit Dynamics

Orbital imperfections

- Orbital drags
- Orbital maneuvers
- Orbital failures

INVESTING IN SPACE

SpaceX to lose as many as 40 Starlink satellites due to space storm

PUBLISHED WED, FEB 9 2022-10:53 AM EST | UPDATED WED, FEB 9 2022-6:42 PM EST

share 🛉 🍠 in 🕯

SpaceX rocket accident leaves the company's Starlink satellites in the wrong orbit

JULY 13, 2024 · 3:27 AM ET

"A Networking Perspective on Starlink's Self-Driving LEO Mega-Constellation", MobiCom 2023

Partial deployments

Implications for Routing

Implications for Routing

Flat routing?

Proactive routing

Link state/Distance vector, SDN

Global routing updates

Excessive global route exchanges (%) Transient routing inconsistencies (%)

Reactive routing

AODV, DSR

Exhaustive route request flooding \otimes Frequent route cache expiry \otimes

SOTA: introducing predictability in routing

Satellite trajectories are predictable

Is it enough for optional LEO networks?

Flat predictive routing?

Unpredictable and random orbital dynamics $m{eta}$

Hierarchical routing?

- Prerequisite: well-defined, stable routing domains
- Not readily available in **extremely mobile** LEO networks 🛞

Push network functions onboard for multi-tenancy

Push network functions onboard for multi-tenancy

Push network functions onboard for multi-tenancy

Each satellite can cover multiple MNOs (each having 1,000s of UEs)

How to stabilize hierarchical addressing and routing in dynamic LEO networks?

Requirements for Stable Hierarchical Networks

Addressing

- Uniqueness
- Stability
- Locality
- Scalability
- Efficiency
- Backward compatibility
- Others?

Routing

- Well-defined and stable routing domains
- Stability
- Locality
- Scalability
- Efficiency
- Resiliency
- Backward compatibility
- Others?

A case: Earth-centric geographic paradigm

Earth's geographic locations are invariant of extreme satellite mobility

An Earth-Centric Stable LEO Routing Hierarchy

Decouple, localize, and mask LEO dynamics hierarchically

Tier 1: terrestrial network

Tier 2: orbital shells Tie

Stabilizing Addressing for Terrestrial Nodes

Decouple addressing from fast-changing serving satellites

Decouple routing for Earth from its fast-changing serving satellites

Logical routing

Decouple routing for Earth from its fast-changing serving satellites

Logical routing

Decouple routing for Earth from its fast-changing serving satellites

Logical routing <u>(2)</u>

Geographic routing

Decouple routing for Earth from its fast-changing serving satellites

No routing updates when satellites move

How to lay out the geospatial service areas?

Latitude-longitude cells

Hexagon cells (Uber H3)

Space-filling curve (Google S2)

How to lay out the geospatial service areas?

Satellite-oblivious and complex runtime mapping from SATs to terrestrial users

(Uber H3) (Google S2)

• Our solution: Align geographic location with orbits

• Our solution: Align geographic location with orbits

Satellite's runtime sub-point linearly changes

• Our solution: Align geographic location with orbits

• Our solution: Align geographic location with orbits

$$\Delta \alpha_t^{S,D} \equiv \Delta \alpha_0^{S,D} = \alpha_0^S - \alpha_0^D$$
$$\Delta \gamma_t^{S,D} \equiv \Delta \gamma_0^{S,D} = \gamma_0^S - \gamma_0^D$$

Time-invariant coordinate distance enable stable routing

Our solution: Stable Hierarchical geographic address IPv6 Header

- Stable address despite LEO satellite mobility and Earth's rotations
- Local address based on each terrestrial node's geographic location
- Scalable address based on hierarchical geographic cells
- Unique address for each terrestrial node
- Backward compatible with the legacy IP address
- Efficient address to support near-stateless geographic routing

Our solution: Stable Hierarchical geographic address IPv6 Header

- **Stable** address despite LEO satellite mobility and Earth's rotations
- Local address based on each terrestrial node's geographic location
- Scalable address based on hierarchical geographic cells

No address update when satellite moves

Efficient address to support near-stateless geographic routing

Intra-Orbital-Shell Routing for Earth

• Stateless and ISL churn resilient geographic routing

Intra-Orbital-Shell Routing for Earth

• Stateless and ISL churn resilient geographic routing

Operator-oblivious \rightarrow **Multi-tenancy**

Inter-Orbital-Shell Routing for Earth

Earth as the anchor

"Stable Hierarchical Addressing and Routing for Operational Satellite Networks", MobiCom 2024

Opportunistic shortcuts

Practical Deployment

• As a control-plane overlay

Preliminary Results

81-1489x routing updates ↓

Near optimal routing

Preliminary Results

Resilient to ISL failures

Preliminary Results

Cost-effective and scalable addressing

24-bit geographic cell index can address the full-fledged Starlink constellation with 42,000 satellites.

Conclusion

- Multi-dimensional and exhaustive LEO dynamics in reality
 - New challenges that terrestrial networks never encounter
- A case for stable hierarchical addressing and routing
 - Decouple, localize, and mask LEO dynamics hierarchically
- IETF should play a more active role in this direction
 - Stable addressing and routing as the foundation for SatNet
 - Collaboration w/ 3GPP NTN standardization, academia & industry

Thank you!

Contact: <u>lihewu@cernet.cn</u> <u>yuanjiel@tsinghua.edu.cn</u> <u>llx22@mails.tsinghua.edu.cn</u>

figure source: Geespace